Up: 2:2

Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method

Shawn Mankad; George Michailidis; Andrei Kirilenko

Algorithmic Finance (2013), 2:2, 151-165
DOI: 10.3233/AF-13023

Published: Abstract, PDF.
Archived: SSRN.

Abstract

Not long ago securities were traded by human traders in face-to-face markets. The ecosystem of an open outcry market was well-known, visible to a human eye, and rigidly prescribed. Now trading is increasingly done in anonymous electronic markets where traders do not have designated functions or mandatory roles. In fact, the traders themselves have been replaced by algorithms (machines) operating with little or no human oversight. While the process of electronic trading is not visible to a human eye, machine-learning methods have been developed to recognize persistent patterns in the data. In this study, we develop a dynamic machine-learning method that designates traders in an anonymous electronic market into five persistent categories: high frequency traders, market makers, opportunistic traders, fundamental traders, and small traders. Our method extends a plaid clustering technique with a smoothing framework that filters out transient patterns. The method is fast, robust, and suitable for a discovering trading ecosystems in a large number of electronic markets.

Managing Editor

Philip Maymin

University of Bridgeport

Deputy Managing Editor

Jayaram Muthuswamy

Kent State University

Advisory Board

Kenneth J. Arrow

Stanford University

Herman Chernoff

Harvard University

David S. Johnson

AT&T Labs Research

Leonid Levin

Boston University

Myron Scholes

Stanford University

Michael Sipser

Massachusetts Institute of Technology

Richard Thaler

University of Chicago

Stephen Wolfram

Wolfram Research

Editorial Board

Associate Editors

Peter Bossaerts

California Institute of Technology

Emanuel Derman

Columbia University

Ming-Yang Kao

Northwestern University

Pete Kyle

University of Maryland

David Leinweber

Lawrence Berkeley National Laboratory

Richard J. Lipton

Georgia Tech

Avi Silberschatz

Yale University

Robert Webb

University of Virginia

Affiliate Editors

Giovanni Barone-Adesi

University of Lugano

Bruce Lehmann

University of California, San Diego

Unique Features of the Journal

Open access
Online articles are freely available to all.
No submission fees
There is no cost to submit articles for review. There will also be no publication or author fee for at least the first two volumes.
Authors retain copyright
Authors may repost their versions of the papers on preprint archives, or anywhere else, at any time.
Enhanced content
Enhanced, interactive, computable content will accompany papers whenever possible. Possibilities include code, datasets, videos, and live calculations.
Comments
Algorithmic Finance is the first journal in the Financial Economics Network of SSRN to allow comments.
Archives
The journal is published by IOS Press. In addition, the journal maintains an archive on SSRN.com.
Legal
While the journal does reserve the right to change these features at any time without notice, the intent will always be to provide the world's most freely and quickly available research on algorithmic finance.
ISSN
Online ISSN: 2157-6203
Print ISSN: 2158-5571