Up: 2:3-4

Stock chatter: Using stock sentiment to predict price direction

Michael Rechenthin; W. Nick Street; Padmini Srinivasan

Algorithmic Finance (2013), 2:3-4, 169-196
DOI: 10.3233/AF-13025

Published: Abstract, PDF.
Archived: SSRN.


This paper examines a popular stock message board and finds slight daily predictability using supervised learning algorithms when combining daily sentiment with historical price information. Additionally, with the profit potential in trading stocks, it is of no surprise that a number of popular financial websites are attempting to capture investor sentiment by providing an aggregate of this negative and positive online emotion. We question if the existence of dishonest posters are capitalizing on the popularity of the boards by writing sentiment in line with their trading goals as a means of influencing others, and therefore undermining the purpose of the boards. We exclude these posters to determine if predictability increases, but find no discernible difference.

Managing Editor

Philip Maymin

University of Bridgeport

Deputy Managing Editor

Jayaram Muthuswamy

Kent State University

Advisory Board

Kenneth J. Arrow

Stanford University

Herman Chernoff

Harvard University

David S. Johnson

AT&T Labs Research

Leonid Levin

Boston University

Myron Scholes

Stanford University

Michael Sipser

Massachusetts Institute of Technology

Richard Thaler

University of Chicago

Stephen Wolfram

Wolfram Research

Editorial Board

Associate Editors

Peter Bossaerts

California Institute of Technology

Emanuel Derman

Columbia University

Ming-Yang Kao

Northwestern University

Pete Kyle

University of Maryland

David Leinweber

Lawrence Berkeley National Laboratory

Richard J. Lipton

Georgia Tech

Avi Silberschatz

Yale University

Robert Webb

University of Virginia

Affiliate Editors

Giovanni Barone-Adesi

University of Lugano

Bruce Lehmann

University of California, San Diego

Unique Features of the Journal

Open access
Online articles are freely available to all.
No submission fees
There is no cost to submit articles for review. There will also be no publication or author fee for at least the first two volumes.
Authors retain copyright
Authors may repost their versions of the papers on preprint archives, or anywhere else, at any time.
Enhanced content
Enhanced, interactive, computable content will accompany papers whenever possible. Possibilities include code, datasets, videos, and live calculations.
Algorithmic Finance is the first journal in the Financial Economics Network of SSRN to allow comments.
The journal is published by IOS Press. In addition, the journal maintains an archive on SSRN.com.
While the journal does reserve the right to change these features at any time without notice, the intent will always be to provide the world's most freely and quickly available research on algorithmic finance.
Online ISSN: 2157-6203
Print ISSN: 2158-5571